Efficient Methods for Automatic Speech Recognition

نویسنده

  • Alexander Seward
چکیده

This thesis presents work in the area of automatic speech recognition (ASR). The thesis focuses on methods for increasing the efficiency of speech recognition systems and on techniques for efficient representation of different types of knowledge in the decoding process. In this work, several decoding algorithms and recognition systems have been developed, aimed at various recognition tasks. The thesis presents the KTH large vocabulary speech recognition system. The system was developed for online (live) recognition with large vocabularies and complex language models. The system utilizes weighted transducer theory for efficient representation of different knowledge sources, with the purpose of optimizing the recognition process. A search algorithm for efficient processing of hidden Markov models (HMMs) is presented. The algorithm is an alternative to the classical Viterbi algorithm for fast computation of shortest paths in HMMs. It is part of a larger decoding strategy aimed at reducing the overall computational complexity in ASR. In this approach, all HMM computations are completely decoupled from the rest of the decoding process. This enables the use of larger vocabularies and more complex language models without an increase of HMM-related computations. Ace is another speech recognition system developed within this work. It is a platform aimed at facilitating the development of speech recognizers and new decoding methods. A real-time system for low-latency online speech transcription is also presented. The system was developed within a project with the goal of improving the possibilities for hard-of-hearing people to use conventional telephony by providing speech-synchronized multimodal feedback. This work addresses several additional requirements implied by this special recognition task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing and implementing a system for Automatic recognition of Persian letters by Lip-reading using image processing methods

For many years, speech has been the most natural and efficient means of information exchange for human beings. With the advancement of technology and the prevalence of computer usage, the design and production of speech recognition systems have been considered by researchers. Among this, lip-reading techniques encountered with many challenges for speech recognition, that one of the challenges b...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

سیستم برچسب گذاری اجزای واژگانی کلام در زبان فارسی

Abstract: Part-Of-Speech (POS) tagging is essential work for many models and methods in other areas in natural language processing such as machine translation, spell checker, text-to-speech, automatic speech recognition, etc. So far, high accurate POS taggers have been created in many languages. In this paper, we focus on POS tagging in the Persian language. Because of problems in Persian POS t...

متن کامل

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003